Design Study of Welded Beam Bracket According to Stress Concentrations in the Weld

University essay from KTH/Skolan för industriell teknik och management (ITM)

Abstract: In a bus chassis, welded connections are often preferred to other fastening techniques due to low cost and broad competence among suppliers but are usually the weakest parts due to fatigue life. Evaluation of welds is often costly in time and competence. Long iteration times are often leaving welded designs unoptimized and poorly understood by designers and engineers. The goal of this thesis is to gather knowledge about a plug-welded bracket commonly found welded to beams in bus chassis and body, aiding the design and dimensioning of such brackets. A factorial design study was performed using FEM analysis with the “Effective notch method,” revealing the effects of seven different design parameters on the stresses in the weld. A theory to analytically calculate the profile of the bracket is presented. The theory is taking the beam’s second moment of area and the bending moment into consideration, essentially tuning the bracket’s stiffness to the beam and the load situation. An improved bracket is presented, analyzed, and compared to the design study. The results show how stresses in the weld are affected by the stiffness of the bend in the bracket, the location of bolts (or other fastening technique) and the plug weld dimensions. When the weld is made to run longer along the beam, the importance of adjusting the stiffness in the bracket increases in order to balance the load throughout the whole weld.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)