Edge Orchestrator for Mobile Robotics to provide on-demand run-time support

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: Edge computing emerged as an attractive method of distributing computational resources in a network. When compared with cloud computing, edge computing presents a number of key benefits which include improved response times, scalability, privacy, and redundancy. This makes edge computing desirable for use in mobile robotics, in which low response times and redundancy are key issues. This thesis work will cover the design and implementation of a general-purpose edge orchestrator, that can support a wide range of domains due to being built around the concept of modularity. An edge orchestrator is a program that manages an edge network by analyzing the edge network and the requirements of devices within that network, then optimizing how the computational resources are distributed within the devices in the network. Modules have been designed and implemented on top of the orchestrator that allow for optimizations specific to mobile robotics. A proof of concept module was designed to optimize for latency which was compared with an external algorithm that seeks to optimize for latency as well. Both were implemented on the orchestrator and an evaluation was performed to compare both approaches. It was found that the module designed in this thesis is better suited for optimizing for latency. LXD was chosen to be used for software packaging which is a container-based software packaging solution. A software packaging solution is used to package software which would be deployed by the orchestrator. The choice of LXD is analyzed through an evaluation procedure that compares it with Docker, which is another container-based software packaging solution. It was found that LXD produces containers of smaller size but required more time to generate those containers, when compared with Docker. It was also found that LXD container images exhibited better performance than the Docker ones for software which is not I/O heavy. It was decided through this evaluation that LXD was a better choice for the orchestrator.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)