Modeling an Embedded Climate System Using Machine Learning

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: Recent advancements in processing power, storage capabilities, and availability of data, has led to improvements in many applications through the use of machine learning. Using machine learning in control systems was first suggested in the 1990s, but is more recently being implemented. In this thesis, an embedded climate system, which is a type of control system, will be looked at. The ways in which machine learning can be used to replicate portions of the climate system is looked at. Deep Belief Networks are the machine learning models of choice. Firstly, the functionality of a PID controller is replicated using a Deep Belief Network. Then, the functionality of a more complex control path is replicated. The performance of the Deep Belief Networks are evaluated at how they compare to the original control portions, and the performance in hardware. It is found that the Deep Belief Network can quite accurately replicate the behaviour of a PID controller, whilst the performance is worse for the more complex control path. It was seen that the use of delays in input features gave better results than without. A climate system with a Deep Belief Network was also loaded onto hardware. The minimum requirements of memory usage and CPU usage were met. However, the CPU usage was greatly affected, and if this was to be used in practice, work should be done to decrease it. 

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)