Investigation of Emission Source Heights in FLEXPART 10.02 for the Wildfire in Pedrógão Grande, Portugal, 2017

University essay from Uppsala universitet/Luft-, vatten- och landskapslära

Abstract: One of the worst wildfires in Portugal in 2017 on June17- 21 started at the central part of Pedrógão Grande and spread fast to the surrounding areas Góis, Pampilhosa da Serra and Arganil. The wildfire took 64 lives and a large smoke plume was observed. The interest in smoke plumes from wildfires is partly due to their emitting of greenhouse gases (CO2), a large source of aerosols, CO, oxides of nitrogen and other trace gases that can affect the air quality at local and regional scale. The regional scale can be affected because the smoke from wildfires can get elevated and be transported into the free troposphere and the lower stratosphere by either pyro convection or radiative driven convection and can be transported long distances, for example from Canada to Germany. This thesis investigates how the emission source height in a model affects the transport of the smoke plume and compares the simulations with observations. Observations of transport of emissions from wildfires are often done with satellites and in this thesis data from the second modern-era retrospective analysis for research and applications (MERRA2) is used as the observations. In this thesis the numerical model FLEXPART 10.02 is used to calculate the transportation of CO from the wildfire in Pedrógão Grande. The altitude of the emission source top height and bottom height in FLEXPART was changed to see how it affected the smoke plume in the simulation. The agreement between plumes from the observations and the simulation plumes were calculated with the structural similarity (SSIM) index and the change of SSIM index was investigated. The results were that the best similarity for horizontal images was with an emission source height of 100- 300 m, for vertical images at 40°N with an emission source height 0- 1500 m and for vertical images at 41°N with an emission source height 100- 1200. The overall best simulation was the simulation with emission source height 100- 1200 m (average of the three similarity calculations). Some uncertainty occurs in the results due to for example differences in resolutions between MERRA2 and FLEXPART and the weather condition may have contributed. To improve the results there is a need to compare simulations with more wildfires to see that the SSIM index behaves the same.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)