Exploration Strategies for Robotic Vacuum Cleaners

University essay from KTH/Mekatronik

Abstract: In this thesis, an exploration mode for the PUREi9 robotic vacuum cleaner is implemented. This exploration would provide information for optimizing the cleaning path beforehand, and would allow the robot to relocalize itself or the charger more easily in case it gets lost. Two elements are needed in order to implement an exploration mode; first, an exploration algo-rithm which will decide the next position of the robot in order to obtain useful information about the environment (unknown areas, empty spaces, obstacles...), and second, an exploration map which stores that information and is updated each time a new relevant position is reached. These elements are related and generally both are required for performing successfully the exploration of a specific environment. A frontier-based strategy is adopted for the exploration algorithm, together with occupancy grid maps. This strategy has long been regarded as a key method for autonomous robots working in unknown or changing environments. The idea of frontier-based algorithms is to divide the environ-ment into cells of regular size and drive the robot to the frontiers between cells with no obstacles and cells for which no information has been gathered. It plans one step ahead by choosing a lo-cation which provides new environment information, instead of planning in advance all locations where the robot needs to acquire new sensor information. Based on frontier strategy, two different exploration algorithms are implemented in the project. The first one is called "random frontier strategy", which chooses arbitrarily the frontier to go among the frontiers set. The second is called "closest frontier strategy", which chooses the closest frontier as the NBV (Next Best View) the robot should drive to. A path planning algorithm, based on Dijkstra’s algorithm and a node graph, has also been implemented in order to guide the robot towards the frontiers. The two methods have been compared by means of simulations in different environments. In addition, both exploration strategies have been tested on a real device. It is found that the closest frontier strategy is more efficient in terms of path length between scanning points, while both methods give a similar exploration ratio, or percentage of fully explored cells within the final map. Some additional work is required in order to improve the performance of the exploration method in the future, such as detecting unreachable frontiers, implementing a more robust path planning algorithm, or filtering the laser measurements more extensively.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)