Study of Surface Pre-treatments for AuSi Wafer-Level Eutectic Bonding : An investigation of the impact of different native oxide etching methods and storage times before AuSi eutectic bonding

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: Wafer bonding is important in microelectromechanical systems (MEMS) manufacturing, enabling wafer-level encapsulation and packaging. In this project, different pre-treatments of the polycrystalline silicon surface for eutectic gold-silicon (AuSi) bonding were studied with respect to the resulting bond strength. Native oxides or other surface layers can decrease the interaction between Au and Si, leading to weaker bonds. Different etching methods were investigated to remove native oxide. Spectroscopic ellipsometry (SE), water contact angle measurements and Fourier transform infrared spectroscopy (FTIR) were used to analyze the surfaces. SE measurements showed that the oxide layer grew 5 Å the first 4 hours after HF etch, rinse and dry, but then grew less than this during the following 6 weeks. The measured oxide growth was similar for wafers with other pre-treatments. Through contact angle measurements, it was demonstrated that the different etching methods resulted in different outermost surface layers. None of the contact angles were changed much over several weeks, indicating subsequent oxide growth occurred below a stable outermost layer. For wafer bonding, wafers with bond frame structures were used. After wafer bonding, the bond frames were analyzed with infrared (IR) microscopy and the bonds were shear tested for bond strength. The shorter the exposure time to ambient air atmosphere before bond, the stronger the bond in general. Furthermore, the wafers stored in nitrogen atmosphere exhibited higher bond strengths than the wafers stored in air for the same amount of time, confirming that the growing oxide was the reason for the decreased bond quality during wafer storage. HF (wet/vapor) etched wafers in general had slightly stronger bonds than the other wafers and the wafers etched with HF vapor had the highest average bond strength of all. The IR images showed that white areas in the bond frames were related to decreased bond strength, and that wafers that had longer storage time on average had more white in the bond frames. As a conclusion, to achieve as strong bonds as possible, the waiting time between wafer pre-treatments and bonding should be minimized, and in the waiting time it is beneficial to store the wafers in nitrogen atmosphere. In this study most wafers stored 2 weeks in nitrogen had good bond quality and even wafers stored 3 days in air had acceptable bond strengths. However, using HF to etch away the oxide before bond is preferable compared to the other etching methods, not only to have larger average bond strength, but also to have less bond strength decrease during waiting time before bond.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)