Analysis of Ferrocement and Textile Reinforced Concrete for Shell Structures

University essay from Lunds universitet/Byggnadsmekanik; Lunds universitet/Institutionen för byggvetenskaper

Abstract: The purpose of this master’s thesis is to investigate the stiffness properties of three reinforcement materials for concrete shell structures: ferrocement, glass-fibre textile and carbon-fibre textile. Three types of strategies were used to analyse the properties of the materials, an analytical model, experimental beam prototypes and a numerical analysis. Immediate comparison of the mechanical experiments with the numerical models revealed stiffness deviations of 38% for the ferrocement, 272% for the glass and 211% for the carbon textile reinforced beam, respectively. Ferrocement is the stiffest material according to the mechanical tests. However, the results from the analytical and numerical models show that the carbon reinforced beam has the highest stiffness. Because of the disparity between results from the numerical and the mechanical model, the overall comparison is inconclusive. Possible causes are the influence of microcracks on the bond between the reinforcement and concrete as well as deviations of the concrete thickness of the physical samples. Future research should focus on assumptions in the material properties, numerical model and hand labour to be able to more properly investigate the actual stiffness of the three composite materials.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)