Multiple Substrate-Induced Respiration and Isothermal Calorimetry : Applicability in Risk Assessment of Contaminated Soil

University essay from Uppsala universitet/Institutionen för geovetenskaper

Abstract: At present, soils face great threats. Consequences of human activities, such as climate change, acidification and contamination result in decreased soil health. This is a threat to human health and well-being, since our society is dependent on soil ecosystem services. The soil ecosystems provide resources, such as food and fresh water, regulate the climate and play key parts in important life supporting biological processes, e.g. cycling of carbon and nutrients. Due to increased awareness of the threats that soils face, and its importance to humans, soil quality monitoring has recently received increased attention. Microorganisms run most biological processes in the soil, such as decomposition of organic material and nutrient cycling. Thus, microbial activity and diversity are considered useful biological indicators for soil quality monitoring. These biological properties can be examined using different methods. The aim of the project was to evaluate the potential of multiple substrate-induced respiration (MSIR), using the MicroRespTM system, and isothermal calorimetry for determining microbial activity and diversity in soils contaminated with copper (Cu) and polycyclic aromatic hydrocarbons (PAH). Thereby, the methods’ applicability in risk assessment of contaminated soil could be decided. MSIR is considered appropriate for determining microbial activity and functional diversity, while isothermal calorimetry has not been tested as much in this area. The calorespirometric ratio (produced heat per unit CO2) was calculated to evaluate potential relationships between heat and CO2 at different contamination levels. Although there was some variation between the methods, Cu had a clear effect on both microbial activity and functional diversity. Both methods were thus considered applicable in risk assessment of soil contaminated with Cu. The impact of PAH appeared to be more complex, the effects on microbial activity varied and PAH had little significant effect on functional diversity. Neither of the methods were therefore considered applicable for assessment of soil contaminated with PAH. The calorespirometric ratio did not provide useful results, and cannot be recommended for risk assessment purposes at present.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)