Forwarding Strategies in Information Centric Networking

University essay from KTH/Skolan för elektro- och systemteknik (EES)

Abstract: The Internet of the 21th century is a different version from the original Internet. The Internet is becoming more and more a huge distribution network for large quantities of data (Photos, Music, and Video) with different types of connections and needs. TCP/IP the work horse for the Internet was intended as a vehicle to transport best effort Connection oriented data where the main focus is about transporting data from point A to point B regardless of the type of data or the nature of path.  Information Centric Networking (ICN) is a new paradigm shift in a networking where the focus in networking is shifted from the host address to the content name. The current TCP/IP model for transporting data depends on establishing an end to end connection between client and server. However, in ICN, the client requests the data by name and the request is handled by the network without the need to go each time to a fixed server address as each node in the network can serve data. ICN works on a hop by hop basis where each node have visibility over the content requested enabling it to take more sophisticated decisions in comparison to TCP/IP where the forwarding node take decisions based on the source and destination IP addresses. ICN have different implementations projects with different visions and one of those projects is Named Data Networking (NDN) and that’s what we use for our work. NDN/ICN architecture consists of different layers and one of those layers is the Forwarding Strategy (FS) layer which is responsible for deciding how to forward the coming request/response. In this thesis we implement and simulate three Forwarding Strategies (Best Face Selection, Round Robin, and Weighted Round Robin) and investigate how they can adapt to changes in link bandwidth with variable traffic rate. We performed a number of simulations using the ndnSIMv2.1 simulator. We concluded that Weighted Round Robin offers high throughput and reliability in comparison to the other two strategies. Also, the three strategies offer better reliability than using a single static face and offer lower cost than using the broadcast strategy. We also concluded that there is a need for a dynamic congestion control algorithm that takes into consideration the dynamic nature of ICN. 

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)