Improving Ray Tracing Performance with Variable Rate Shading

University essay from Blekinge Tekniska Högskola/Institutionen för datavetenskap

Abstract: Background. Hardware-accelerated ray tracing has enabled ray traced reflections for real-time applications such as games. However, the number of rays traced each frame must be kept low to achieve expected frame rates. Therefore, techniques such as rendering the reflections at quarter resolution are used to limit the number of rays traced each frame. The new hardware features inline ray tracing, and hardware variable rate shading (VRS) could be combined to limit the rays even further. Objectives. The first goal is to use hardware VRS to limit the number of rays even further than rendering the reflections at quarter resolution, while maintaining the visual quality in the final rendered image. The second goal is to determine if inline ray tracing provides better performance than using ray generation shaders. Methods. Experiments are performed on a ray traced reflections pipeline using different techniques to generate rays. The techniques use inline ray tracing, inline ray tracing combined with VRS, and ray generation shaders. These are compared and evaluated using performance tests and the image evaluator \FLIP. Results. The results show that limiting the number of rays with hardware VRS result in a performance increase. The difference in visual quality between using inline ray tracing with VRS and previous techniques remain comparable. The performance tests show that inline ray tracing performs worse than ray generation shaders with increased scene complexity. Conclusions. The conclusion is that hardware VRS can be used to limit the number of rays and achieve better performance while visual quality remain comparable to previous techniques. Inline ray tracing does not perform better than ray generation shaders for workloads similar to ray traced reflections.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)