MULTI-DRONE COLLABORATION FOR SEARCH AND RESCUE MISSIONS

University essay from Mälardalens högskola/Akademin för innovation, design och teknik

Abstract: Unmanned Aerial Vehicle (UAV), also called drones, are used for Search And Rescue (SAR) missions, mainly in the form of a pilot manoeuvring a single drone. However, the increase in labour to cover larger areas quickly would result in a very high cost and time spent per rescue operation. Therefore, there is a need for an easy to use, low-cost, and highly autonomous swarm of drones for SAR missions where the detection and rescue times are kept to a minimum. In this thesis, a Subsumption-based architecture is proposed, which combines multiple behaviours to create more complex behaviours. An investigation of (1) what are the critical aspects of controlling a swarm of drones, (2) how can a combination of different behavioural algorithms increase the performance of a swarm of drones, and (3) what benchmarks are necessary when evaluating the fitness of the behavioural algorithms. The proposed architecture was simulated in AirSim using the SimpleFlight flight controller through experiments that evaluated the individual layers and missions that simulated real-life scenarios. The results validate the modularity and reliability of the architecture, where the architecture has the potential for improvements in future iterations. For the search area of 400×400meters, the swarm consistently produced an average area coverage of at least 99.917% and found all the missing people in all missions, with the slowest average being 563 seconds. Compared to related work, the result produced similar or better times when scaled to the same proportions and higher area coverage. As comparisons of results in SAR missions can be difficult, the introduction of Active time can serve as a benchmark for others in future swarm performance measurements. 

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)