Low-carbon hydrogen production from waste plastics via pyrolysis and in-line catalytic cracking process

University essay from KTH/Kraft- och värmeteknologi

Abstract: This study develops a novel pyrolysis process combined with in-line catalytic reforming toproduce high purity hydrogen and carbon products from waste plastics. The input resource is waste plastic material in the form of discarded Covid masks. Results show that for the optimized pyrolysis followed by in-line biochar-based catalytic reforming process, the hydrogen yield is 98.2 mg/g-mask (up to 87% purity), and the carbonyield is 642.4 mg/g-mask, with over 70% of the waste plastic being completely cracked to elemental carbon and hydrogen. The overall process has virtually no CO2 emissions. The use of biomass char catalysts has been studied to contribute to increased hydrogen yield. This is because the unique porous structure of the biochar catalyst increases the residence time of the pyrolysis vapor in the catalytic layer, allowing sufficient cracking of the macromolecular vapor, therefore, increasing the hydrogen yield. The process is also facilitated by the cracking temperature, which increases the cracking of the pyrolysis vapor, resulting in an increase in char yield. However, high temperatures may breakdown the structure of the biomass char catalyst, causing more of the pyrolysis vapor to be converted to CH4, reducing the hydrogen yield. The optimum hydrogen yield was obtained at process parameters of a Biochar catalyst-to-Maskratio (C/M ratio) of 2 and a cracking temperature of 900 oC. 

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)