Exosomes and lipid nanoparticles - the future of targeted drug delivery

University essay from Uppsala universitet/Institutionen för biologisk grundutbildning

Abstract: In this project an overview of how synthetic lipid nanoparticles and exosomes can be used for targeted drug delivery is compiled. The goal is to identify aspects that can be in favor for targeted drug delivery and the development of products at Cytiva. The most important fields for Cytiva to understand is the methods and the challenges of cell culturing for production of exosomes, productions of lipid nanoparticles, purification of exosomes, analysis of both exosomes and lipid nanoparticles, and how exosomes and lipid nanoparticles are used as tools for drug delivery. To understand these aspects a description focusing on structural components, specific delivery and cargo loading is also included in the report. Many different components and methods have been found in the different fields mentioned, and the ones that we believe are the most relevant for Cytiva are presented and discussed in the report. We conclude that both exosomes and lipid nanoparticle are suitable options as drug delivery vehicles, especially for their ability to be modified for targeted delivery, encapsulate therapeutic compounds and cross biological barriers. Exosomes are also biostable and possess low immunogenicity. For production the methods identified with highest potential are Hollow-Fiber Bioreactor for cell culturing in production of exosomes and Microemulsion and High-Pressure Homogenization for lipid nanoparticles. Purification is required for exosomes and the most prominent method is Size-Exclusion Chromatography, because of its scalability. After production and purification it is important to be able to detect the vesicles and the most developed and used methods are Nanoparticle Tracking Analysis and Flow Cytometry, beacuse they can use labeling techniques and single vesicle analysis.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)