Radiated Susceptibility Measurements on Analogue Temperature Sensors

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Author: Jacob Cederlund; [2020]

Keywords: ;

Abstract: The need for electromagnetic compatibility is growing steadily as the usage of electronics in our daily lives is increasing more than ever. A common issue encountered in electromagnetic compatibility testing is analogue sensors that fail when exposed to electromagnetic fields. Testing how well electronics do when exposed to electromagnetic fields is called susceptibility testing, and standards for how to do these tests have been developed to ensure that the results of the tests can be reproduced. In this thesis work, analogue temperature sensors have been shielded using a few common techniques. The susceptibility of the sensors has been analysed by looking at their output voltage when the sensors were exposed to electro- magnetic fields of different field strengths. The output of the sensors was read by an Arduino that was shielded and tested to make sure it would not be affected by the electromagnetic fields used in the sensor tests. The result of the first set of sensor tests shows that shielding the cables running to the analogue temperature sensors and filtering away disturbances using ferrites gives a considerable decrease in susceptibility against electro- magnetic fields, while twisted cables and RC-filters did not. The results also showed that the introduction of a ground plane increased the susceptibility of the sensors, which most likely was due to it not providing the current with a path of less impedance and only served to increase the length of the unintentional antenna, which made it couple to the electromagnetic field more easily. However, during a second round of testing, the results of all the tests were hard to reproduce exactly, which calls into question how trustable the results of standardised susceptibility tests are. Therefore, when designing for the electromagnetic susceptibility of a product, a rather wide margin should be used in order to make sure that the product can reliably pass susceptibility tests.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)