Tree Detection and Species Identification using LiDAR Data

University essay from KTH/Geodesi och geoinformatik

Abstract: The importance of single-tree-based information for forest management and related industries in countries like Sweden, which is covered in approximately 65% by forest, is the motivation for developing algorithms for tree detection and species identification in this study. Most of the previous studies in this field are carried out based on aerial and spectral images and less attention has been paid on detecting trees and identifying their species using laser points and clustering methods. In the first part of this study, two main approaches of clustering (hierarchical and K-means) are compared qualitatively in detecting 3-D ALS points that pertain to individual tree clusters. Further tests are performed on test sites using the supervised k-means algorithm in which the initial clustering points are defined as seed points. These points, which represent the top point of each tree are detected from the cross section analysis of the test area. Comparing those three methods (hierarchical, ordinary K-means and supervised K-means), the supervised K-means approach shows the best result for clustering single tree points. An average accuracy of 90% is achieved in detecting trees. Comparing the result of the thesis algorithms with results from the DPM software, developed by the Visimind Company for analysing LiDAR data, shows more than 85% match in detecting trees. Identification of trees is the second issue of this thesis work. For this analysis, 118 trees are extracted as reference trees with three species of spruce, pine and birch, which are the dominating species in Swedish forests. Totally six methods, including best fitted 3-D shapes (cone, sphere and cylinder) based on least squares method, point density, hull ratio and slope changes of tree outer surface are developed for identifying those species. The methods are applied on all extracted reference trees individually. For aggregating the results of all those methods, a fuzzy logic system is used because of its good reputation in combining fuzzy sets with no distinct boundaries. The best-obtained model from the fuzzy system provides 73%, 87% and 71% accuracies in identifying the birch, spruce and pine trees, respectively. The overall obtained accuracy in species categorization of trees is 77%, and this percentage is increased dealing with only coniferous and deciduous types classification. Classifying spruce and pine as coniferous versus birch as deciduous species, yielded to 84% accuracy.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)