Implementation and Benchmarking of a Crypto Processor for a NB-IoT SoC Platform

University essay from Lunds universitet/Institutionen för elektro- och informationsteknik

Abstract: The goal of this Master’s Thesis is to investigate the implementation of cryptographic algorithms for IoT and how these encryption systems can be integrated in a NarrowBand IoT platform. Following 3rd Generation Partnership Project (3GPP) specifications, the Evolved Packet System (EPS) Encryption Algorithms (EEA) and EPS Integrity Algorithms (EIA) have been implemented and tested. The latter are based on three different ciphering algorithms, used as keystream generators: Advanced Encryption Standard (AES), SNOW 3G and ZUC. These algorithms are used in Long Term Evolution (LTE) terminals to perform user data confidentiality and integrity protection. In the first place, a thorough study of the algorithms has been conducted. Then, we have used Matlab to generate a reference model of the algorithms and the High-Level Synthesis (HLS) design flow to generate the Register-Transfer Level (RTL) description from algorithmic descriptions in C++. The keystream generation and integrity blocks have been tested at RTL level. The confidentiality block has been described along with the control, datapath and interface block at a RTL level using System C language. The hardware blocks have been integrated into a processor capable of performing hardware confidentiality and integrity protection: the crypto processor. This Intellectual Property (IP) has been integrated and tested in a cycle accurate virtual platform. The outcome of this Master’s Thesis is a crypto processor capable of performing the proposed confidentiality and integrity algorithms under request.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)