Impact of Vehicle Dynamics Modelling on Feature Based SLAM for Autonomous Racing.

University essay from KTH/Skolan för industriell teknik och management (ITM)

Abstract: In autonomous racing there is a need to accurately localize the vehicle while simultaneously creating a map of the track. This information can be delivered to planning and control layers in order to achieve fully autonomous racing. The kinematic model is a commonly used motion model in feature-based SLAM. However, it is a poor representation of the vehicle when considering high lateral accelerations since the model is only based on trigonometric relationships. This Master’s Thesis investigates the consequence of using the kinematic model when undertaking demanding maneuvers; and if by switching to a dynamic model, which takes the tire forces into account, can improve the localization performance. An EKF-SLAM algorithm comprising the kinematic and dynamic model was implemented on a development platform. The pose estimation accuracy was compared using either model when subject to typical maneuvers in racing-scenarios. The results showed that the pose estimation accuracy was in general similar when using either of the vehicle models. When exposed to large slip angles, the implications of switching from a kinematic model to a dynamic model resulted in a significantly better pose estimation accuracy when driving in an unknown environment. However, switching to a dynamic model had little effect when driving in a known environment. The implications of the study suggest that, during the first lap of a racing track, the kinematic model should be switched to a dynamic model when subject to high lateral accelerations. For the consecutive laps, the choice of vehicle model has less impact. Keywords: SLAM, EKF-SLAM, Localization, Estimation, Vehicle Dynamics, Kinematic Model, Dynamic Model, Autonomous Racing

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)