Determining an optimal approach for human occupancy recognition in a study room using non-intrusive sensors and machine learning

University essay from Malmö universitet/Teknik och samhälle

Abstract: Mänskligt igenkännande med användning av sensorer och maskininlärning är ett fält med många praktiska tillämpningar. Det finns några kommersiella produkter som på ett tillförlitligt sätt kan känna igen människor med hjälp av videokameror. Dock ger videokameror ofta en oro för inkräktning i privatlivet, men genom att läsa det relaterade arbetet kan man hävda att i vissa situationer är en videokamera inte nödvändigtvis mer tillförlitlig än billiga, icke-inkräktande sensorer. Att känna igen antalet människor i ett litet studie / kontorsrum är en sådan situation. Även om det har gjorts många framgångsrika studier för igenkänning av människor med olika sensorer och maskininlärningsalgoritmer, kvarstår en fråga om vilken kombination av sensorer och maskininlärningsalgoritmer som är allmänt bättre. Denna avhandling utgår från att testa fem lovande sensorer i kombination med sex olika maskininlärningsalgoritmer för att bestämma vilken kombination som överträffade resten. För att uppnå detta byggdes en arduino prototyp för att samla in och spara läsningarna från alla fem sensorer i en textfil varje sekund. Arduinon, tillsammans med sensorerna, placerades i ett litet studierum på Malmö universitet för att samla data vid två separata tillfällen medan studenterna använde rummet som vanligt. Den insamlade datan användes sedan för att träna och utvärdera fem maskininlärningsklassificerare för var och en av de möjliga kombinationerna av sensorer och maskininlärningsalgoritmer, för både igenkänningsdetektering och igenkänningsantal. I slutet av experimentet konstaterades det att alla algoritmer kunde uppnå en precision på minst 90% med vanligtvis mer än en kombination av sensorer. Den högsta träffsäkerheten som uppnåddes var 97%.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)