Performance Comparison of Localization Algorithms for UWB Measurements with Closely Spaced Anchors

University essay from Luleå tekniska universitet/Rymdteknik

Abstract: Tracking objects or people in an indoor environment has a wide variety of uses in many different areas, similarly to positioning systems outdoors. Indoor positioning systems operate in a very different environment however, having to deal with obstructions while also having high accuracy. A common solution for indoor positioning systems is to have three or more stationary anchor antennas spread out around the perimeter of the area that is to be monitored. The position of a tag antenna moving in range of the anchors can then be found using trilateration. One downside of such a setup is that the anchors must be setup in advance, meaning that rapid deployment to new areas of such a system may be impractical. This thesis aims to investigate the possibility of using a different setup, where three anchors are placed close together, so as to fit in a small hand-held device. This would allow the system to be used without any prior setup of anchors, making rapid deployment into new areas more feasible. The measurements done by the antennas for use in trilateration will always contain noise, and as such algorithms have had to be developed in order to obtain an approximation of the position of a tag in the presence of noise. These algorithms have been developed with the setup of three spaced out anchors in mind, and may not be sufficiently accurate when the anchors are spaced very closely together. To investigate the feasibility of such a setup, this thesis tested four different algorithms with the proposed setup, to see its impact on the performance of the algorithms. The algorithms tested are the Weighted Block Newton, Weighted Clipped Block Newton, Linear Least Squares and Non-Linear Least Squares algorithms. The Linear Least Squares algorithm was also run with measurements that were first run through a simple Kalman filter. Previous studies have used the algorithms to find an estimated position of the tag and compared their efficiency using the positional error of the estimate. This thesis will also use the positional estimates to determine the angular position of the estimate in relation to the anchors, and use that to compare the algorithms. Measurements were done using DWM1001 Ultra Wideband (UWB) antennas, and four different cases were tested. In case 1 the anchors and tag were 10 meters apart in line-of-sight, case two were the same as case 1 but with a person standing between the tag and the anchors. In case 3 the tag was moved behind a wall with an adjacent open door, and in case 4 the tag was in the same place as in case 3 but the door was closed. The Linear Least Squares algorithm using the filtered measurements was found to be the most effective in all cases, with a maximum angular error of less than 5$^\circ$ in the worst case. The worst case here was case 2, showing that the influence of a human body has a strong effect on the UWB signal, causing large errors in the estimates of the other algorithms. The presence of a wall in between the anchors and tag was found to have a minimal impact on the angular error, while having a larger effect on the spatial error. Further studies regarding the effects of the human body on UWB signals may be necessary to determine the feasibility of handheld applications, as well as the effect of the tag and/or the anchors moving on the efficiency of the algorithms.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)