Pellet production of Sicklebush, Pigeon Pea, and Pine in Zambia : Pilot Study and Full Scale Tests to Evaluate Pellet Quality and Press Configurations

University essay from Karlstads universitet/Institutionen för miljö- och livsvetenskaper

Author: Simon Andersson; [2017]

Keywords: biofuel; Africa; cooking fuel;

Abstract: More deaths are caused every year by indoor air pollution than malaria, HIV/AIDS and tuberculosis combined. Cooking with traditional fuels such as charcoal and fuelwood with poor ventilation causes the single most important environmental health risk factor worldwide. It also contributes to environmental issues such as deforestation as traditional biomass fuels and cooking stoves are inefficient and requires large quantities of wood. This is especially critical in Africa where the largest regional population growth in the world is expected to occur. A solution to these issues was realized through fuel pellets and modern cooking stoves by Emerging Cooking Solutions, a company started by two Swedes and based in Zambia. The production of fuel pellets in Zambia is dependent on pine sawdust from small sawmills and is a declining source of raw material. However, other sources of biomass are available in Zambia such as pigeon pea stalk, an agricultural waste product, and sicklebush, an invasive tree species. If these species are viable for pelletization, the production of pellets can increase while reducing issues with sicklebush and promoting cultivation of pigeon pea. The aim of this work is to evaluate if pigeon pea stalk and sicklebush are viable to pelletize in Zambia and how the press is affected by the different raw materials. A pilot study is done at Karlstad University with a single unit press, hardness tester and soxhlet extractor to evaluate how the material constituents correlate to friction in the press channel and hardness of the pellets. The results of the pilot study provide support for full scale tests done in a pellet plant in Zambia. The normal production of pellets from pine sawdust is used as quality and production reference for the tests with pigeon pea stalk, sicklebush, and different mixes of the raw materials. The properties used to evaluate the quality of the pellets are hardness, durability, moisture content, bulk density, and fines. The press configuration is evaluated by logging the electricity consumption by the press motor, calculating the power and specific energy consumption from the logs, and observations during the tests. The results show that sicklebush, and mixes of sicklebush with pigeon pea stalk can produce pellets with better quality than the reference pine pellets. An interesting composition is a mix of 80% pigeon pea and 20% sicklebush that produces pellets with the best quality of all the tests. However, pellets produced from sicklebush and pigeon pea show a larger variation in hardness as compared to the reference pellets from pine sawdust. Mixing pigeon pea with pine reduces these variations but reduces the hardness of the pellets below the reference. The press struggles to process sicklebush and pigeon pea stalk with fluctuating power consumption that causes the motor to trip. The inhomogeneity of the materials in sicklebush and pigeon pea are identified to cause the issues in the press. Production improvements are discussed to facilitate the production of pigeon pea stalk and sicklebush pellets.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)