Hunting for Dark Stars with the James Webb Space Telescope

University essay from Uppsala universitet/Institutionen för fysik och astronomi

Abstract: The first stars in the Universe are thought to have formed in high dark matter density minihalos about 200 million years after the Big Bang. If these stars were able to contract dark matter into their stellar core while forming, some of them might have turned into dark stars (DSs) powered by the heat from dark matter annihilation. The possibilities for detection of DSs with the upcoming James Webb Space Telescope (JWST), scheduled for launch in 2021, is investigated in this work. With DS models generated in Spolyar et al. (2009) and atmosphere spectra from Gustafsson et al. (2008), spectral analysis has been carried out in MATLAB to find the unique colors of DSs compared to galaxies generated in Zackrisson et al. (2017) at z ≈ 7 − 11. It was found that lower temperature DSs (Teff ≤ 7800K) are distinguishable from galaxies and that they would be bright enough to be detected with the JWST provided a magnification factor of µ ≈ 160−1000 with the use of gravitational lensing. More recent DS models reveal that the DS of temperature Teff = 7800K is detectable even without the use of gravitational lensing. However, the probability of finding one today is really small due to DSs’ presumably short lifetime. The results of this work are hoped to give a better understanding of the properties of DSs and to increase the probability of finding one in the large imaging survey carried out by the JWST.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)