Machine learning methods for seasonal allergic rhinitis studies

University essay from Linköpings universitet/Statistik och maskininlärning

Abstract: Seasonal allergic rhinitis (SAR) is a disease caused by allergens from both environmental and genetic factors. Some researchers have studied the SAR based on traditional genetic methodologies. As technology develops, a new technique called single-cell RNA sequencing (scRNA-seq) is developed, which can generate high-dimension data. We apply two machine learning (ML) algorithms, random forest (RF) and partial least squares discriminant analysis (PLS-DA), for cell source classification and gene selection based on the SAR scRNA-seq time-series data from three allergic patients and four healthy controls denoised by single-cell variational inference (scVI). We additionally propose a new fitting method consisting of bootstrap and cubic smoothing splines to fit the averaged gene expressions per cell from different populations. To sum up, we find that both RF and PLS-DA could provide high classification accuracy, and RF is more preferable, considering its stable performance and strong gene-selection ability. Based on our analysis, there are 10 genes having discriminatory power to classify cells of allergic patients and healthy controls at any timepoints. Although there is no literature founded to show the direct connections between such 10 genes and SAR, the potential associations are indirectly confirmed by some studies. It shows a possibility that we can alarm allergic patients before a disease outbreak based on their genetic information. Meanwhile, our experiment results indicate that ML algorithms may discover something between genes and SAR compared with traditional techniques, which needs to be analyzed in genetics in the future.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)