Interligand Electron Transfer Dynamics in Ruthenium Polypyridyl Complexes for Dye Sensitized Solar Cells Determined with Femtosecond Transient IR Absorption Anisotropy

University essay from Uppsala universitet/Fysikalisk kemi

Abstract: Interligand electron transfer (ILET) may be an essential parameter for the injection ofan electron from the dye into the semiconductor surface of a dye sensitized solar cell(DSSC). Without an efficient injection, competing recombination paths may become apparent. For the future development and design of DSSCs, with the hope of increased energy conversion efficiencies, the ILET dynamics is of great importance. For a long time, the most impressive DSSCs were sensitized with polypyridyl ruthenium dyes for which injection has shown to vary from sub-ps to ns duration. It may therefore be crucial to find means of studying the underlying reasons for the slow injection and in this thesis such an attempt has been made. ILET dynamics has been examined using fs Transient Absorption Anisotropy Spectroscopy in both the IR and Visible. This was done for two ruthenium dye complexes: N712 (cis-diisothiocyanato-bis(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II)) and RuL3 (tris(2,2’-bipyridyl-4,4’-dicarboxylate) ruthenium(II)) which are among the best performing dyes in DSSCs. The initial anisotropy was used to determine whether the excitation is localized on the photoselected ligand or delocalized over the available bipyridyl ligands. The depolarization dynamics of the anisotropy decay showed that the ILET must occur on the sub-ps time scale, resulting in rapid loss of the memory of which ligand was photoselected in the absorption process. This means formation of a metal-to-ligand-charge-transfer state that is randomized over the bipyridyl ligands. These results indicate that ILET dynamics should not limit the injection in DSSCs.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)