Space Rider System: GNC and System Model Improvements

University essay from KTH/Rymdteknik

Abstract: As part of a continuous trend of the space sector for obtaining higher performance space science and Earth observations, there is an increasing demand for higher requirements in pointing accuracy and disturbance prediction. The Space Rider System (SRS) is a Low Earth Orbit (LEO) reusable vehicle that aims at answering to that demand. It is a real science platform for short orbital missions, and its service module is being developed for European Space Agency (ESA) by Italian company AVIO S.p.A. The module possesses several rotating parts such as the solar arrays and the reaction wheels, that both create vibration disturbances that might jeopardize the Micro-Gravity (MG) requirements set on the project. At the same time, these reaction wheels were found to be failing to complete certain slew maneuvers, although they are the preferred actuator for most attitude controls. In a perspective to studying these aspects and exploring possible enhancements, this study develops two generic models to simulate the vibration disturbances from Solar Array (SA) and Reaction Wheel (RW). Furthermore, the optimization routine of a different guidance approach using a quaternion shape method is developed to tackle the Reaction Wheels Assembly (RWA) saturation. Through extensive validation work coupled with research and simulations, the developed models were found to enable a good estimation of the vibrations on the spacecraft, and enhance the ability of the company to validate requirements in a more agile way. Furthermore, an optimization algorithm was developed and has shown great performance in desaturating all the problematic maneuvers using reaction wheels during orbital phases, with low computational requirements.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)