Carbon capture in biomass combustion plants using promoted potassium carbonate solutions : A cost and safety evaluation

University essay from Mittuniversitetet/Institutionen för kemiteknik

Abstract: Biomass combustion can be seen as CO2 neutral, thereby biomass combustion plants can have negative CO2 emissions if retrofitted with post combustion capture (PCC) technology using liquid absorbents. Monoethanolamine (MEA) has been used for carbon capture in coal combustion plants but are not suitable for use in biomass combustion plants due to corrosion and high solvent regeneration cost. Instead, the hot potassium carbonate (HPC) process using potassium carbonate (K2CO3) as absorbent show better attributes in these aspects. Although, K2CO3 has slow reaction kinetics with CO2 which need to be improved using promoters. Piperazine is the most tested promoter but are hazardous to humans. Recent research has revealed promising alternatives, among these different amino acid salts such as glycine, proline, and isonipecotic acid which are chemically benign. Biomass flue gas composition vary depending on the biomass fuel characteristics. How this affects the degradation and potential formation of hazardous substances need to be studied further. Biomass combustion plants are generally equipped with flue gas condensation systems, making retrofitting more feasible due to increased system flexibility and energy recovery options. The operation costs of carbon capture and sequestration (CCS) in biomass combustion plants need to be monitored to optimize the plant revenue. To make implementation of HPC in biomass combustion plants a reality, piperazine should be used as promoter. Meanwhile, research should focus on improving the absorption rate in HPC process with more chemically safe promoters.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)