Experimental Study of Heat Transfer Coefficient and Film Cooling Effectiveness

University essay from KTH/Energiteknik

Author: Ke Li; [2019]

Keywords: ;

Abstract: This thesis investigates the possibility to evaluate the film cooling thermal performance on flat plate using Thermochromic Liquid Crystal. After an introduction of the basic concept and background of gas turbine blades film cooling and Thermochromic Liquid Crystal, a thorough explanation of four methods is presented. Dimensional or similarity analysis is implemented to build relationship between real engine and laboratory model. Also, the Reynolds number and Blowing ratio are the fundamental of test object design and TLC selection. This study illustrated the layout of the test rig and corresponding setups, and the following part explains the data collection system and image processing MATLAB script which is vital for the success of data extraction. The least square method is applied to figure time-series optimal solution in solver. All the experiments are conducted at near room temperature as opposed to the extremely high gas turbine exhausted gas, including two calibration test and one heat transfer experiment. The heat transfer coefficient and film cooling effectiveness are the target objective through the entire project. By comparison with a similar experiment in a literature, the outcomes partially validated the film cooling performance under the pre-set flow and thermal condition and the Liquid Crystal thermography technique is proved to be a trustworthy method to mapping heat transfer surface.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)