Interaction of sublevels in gated biased semiconductor nanowires

University essay from Linköpings universitet/Teoretisk Fysik

Abstract: Mesoscopic devices, such as nano-wires, are of interest for the next step in creating spintronic devices. With the ability to manipulate electrons and their spin, spintronic devices may be realised. To that end the different effects found in low-dimensional devices must be studied and understood. In this thesis  the influence that lateral spin-orbit coupling (LSOC) has on a nanowire, with asymmetrical confinement potential, is studied. The nanowire is studied through a numerical approach, using the Hartree-Fock method with Dirac interactions to solve the eigenvalue problem of an idealised infinite nanowire. The nanowire has a split-gate that generates the electrostatic asymmetrical confinement potential. It is found that the lateral spin-orbit coupling has little to no effect without any longitudinal effects in the wire, such as source-drain bias. The electrons will spontaneously create spin-rows in the device due to spin polarization. The spin polarization is triggered by using LSOC, numerical noise or from a weak magnetic field.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)