Brightest Cluster Galaxies in the Local Universe: Mergers, Interactions and the Implications for Galaxy Evolution

University essay from Luleå tekniska universitet/Rymdteknik

Abstract: Clusters of Galaxies are amongst the largest gravitationally bound structures in our Universe and consist of thousands of galaxies. It is in these gigantic systems where Brightest Cluster Galaxies (BCGs) are found, the most massive galaxies in our Universe. A BCG, as its name indicates, is the brightest galaxy in a cluster. These enormous galaxies exhibit special properties, suggesting that they experience a different evolutionary path than a normal galaxy. It is widely accepted that their evolution involves merger events, when the BCG accrete another galaxy, as well as interaction events, like tidal stripping and/or removal of star-forming gas. However, the moment when those interactions happen in the life of the BCG and the extent of their impact on the BCG properties are still under discussion. This thesis aims to explore the later stages of BCG evolution by studying the merger/interaction fraction of BCGs in the local Universe. In particular, this research will explore the significance of correlations between the merger/interaction fraction with a variety of BCG properties (Metric Luminosity, α Parameter, BCG distance from the cluster center, BCG offset from the cluster mean redshift) and with a variety of cluster properties (cluster velocity dispersion, luminosity difference between the BCG and the second ranked galaxy in the cluster). The dependence of the merger/interaction fraction on the kinematics of BCGs is also investigated, using data for the BCG stellar velocity dispersion and for the local normalised velocity dispersion of galaxies within 50 kpc of the BCG. To accomplish these analyses, this thesis uses a sample of 432 BCGs at z ≤ 0.08 imaged as part of the Warpfire survey - an all-sky imaging and spectroscopic survey of BCGs in the nearby universe. Interacting and Non Interacting candidates are classified via a visual inspection of the residual images. This classification is performed by three independent people to ensure its robustness and to minimize classification bias. A merger/interaction fraction of fm/i = 0.220 ± 0.025 (stat) ± 0.040 (sys) at z ≤ 0.08 is found, with a lower limit of fmin ≥ 0.07 ± 0.01 (stat) ± 0.04 (sys). Significant correlations between the interaction status of BCG and its Metric Luminosity and α Parameter are also revealed. Specifically, the BCG merger/interaction fraction more than doubles in amplitude from ∼0.2 to ∼0.5 as the α Parameter increases from 0.4 to 0.9. However, those correlations do not appear to alter the Lm – α relationship, which remains robust against BCG interaction status. No significant correlation is found between the interaction status and the location of the BCG in the cluster, nor between the interaction status and the difference between the Metric Luminosity of the BCG and that of the second brightest galaxy in the cluster. However, it is found that BCGs with strong interaction residuals have slightly higher stellar velocity dispersions. Finally, the normalised velocity dispersion of galaxies within 50 kpc of the BCG is found to be lower than the normalised velocity dispersion around random galaxies in the outskirts of the cluster. The results of this thesis clearly indicate ongoing merger activity involving BCGs. The above results are consistent with idea that while BCG stellar accretion is not a dominant process at the current epoch it is not a negligible one either. These results also support a two phased growth model of BCG where the bulk of their stellar mass is assembled prior to z = 0.5 but still continues at a low level today.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)