Evaluation of air entraining behaviour in concrete using computer aided methods on hardened samples

University essay from KTH/Betongbyggnad

Abstract: Increasing awareness of sustainability in the concrete industry forces structural design and executionto focus on avoiding costly and unpredictable maintenance action, instead paying higher attention todamage prevention by direct actions on early stages of production. One of such approaches, whichdeals with the problem of freezing and thawing deterioration, is intentional air bubble introductionto the concrete mix. However, the mechanism of air entrainment in concrete can be negativelyaffected on different stages of production by many factors including cement type, admixture dosage,casting conditions or mixing procedure. Therefore, reliable tools for the end-product evaluationought to be considered. The experimental study, presented in this work, focuses on understandingthe blast furnace slag (BFS) influence as well as admixtures’ dosage effect on pore structure ofhardened concrete. Three types of cement were evaluated, including ordinary portland cement(OPC) and two types of CEM III cements with different BFS percentage. The optimal amountsof air entraining agent (AEA) and super plasticizer (SP) were chosen and later reduced in orderto evaluate their impact on total air content, spacing factor and specific surface of the air voids.The main method chosen for this evaluation was the use of an office flat-bed scanner to acquireimages and application of BubbleCounter software for the analysis of the air void structure. Thisapproach is based on linear traverse method and requires special surface treatment for contrastenhancement. Specimens for the analysis were cut from hardened concrete cubes and polishedto achieve a flat surface. The samples were later treated with black ink and zinc oxide paste toachieve a clear contrast between white voids and black paste/aggregate area. In order to estimatethe accuracy of this method, more conventional tools such as pressurised gauge method and air voidanalyser were applied for comparison. Resulted mixtures showed significant differences in air voidproperties between OPC and BFS containing concrete, with the latter being less affected by AEAdosage reduction. Changes in spacing factor and specific surface were also registered; however,their deterioration did not follow the same pattern as that of total air content. No significantdeviation between the two cements containing BFS was observed. An interesting effect of the usedpolycarboxylate ether SP on the AEA reactivity was registered, showing deterioration of air voidproperties with the decrease of plasticizer amount. Comparison of the results from different air voidanalysis methods, suggested an overall agreement on the measured air void system changes due tochanging the AEA content. However, the BubbleCounter software tended to slightly overestimatethe material’s resistance to freeze and thaw phenomenon, giving the most optimistic values inspacing factor and specific surface of air voids.       

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)