Design and Simulation of Terahertz Antenna for Spintronic Applications

University essay from Uppsala universitet/Institutionen för materialvetenskap

Abstract: Spintronics is a spin-electronic field where the electron spinangular momentum, in conjunction with charge, is used to read andwrite information in magnetic sensors and logic circuits, e.g. hard disk drive (HDD), magnetic random access memory (MRAM) and broadband TeraHertz (THz) emitters. To realize the THz operations of the spin logic circuits THz manipulation of the magnetic state is pivotal. This THz manipulation of the magnetic state in anti-ferromagnetic magnetic materials can be realized by coupling the materials with THz antennas. On the other hand, these antennas enhance the THz amplitude of spin-electronic THz emitters when coupled with its output. Therefore, these THz antennas can not only be coupled with the input of magnetic logics to improve the efficiency of magnetic sate manipulation in logic devices but also with the output of the spintronic THz emitters to enhance the generated THz signal amplitude. In this project, we have examined four types of antennas: h-dipole, spiral, bow-tie, and a sub-THz antenna. All the antennas are placed on top of a MgO substrate material for simplicity. However, a bow-tie antenna is also fabricated on an antiferromagnetic substrate of TmFeO3 to check this antenna’s reliability to manipulate its magnetic state. We have studied the impact of antenna geometries on the generated electric field amplitude. We have optimized each antenna for maximum electric field norm profile, with an increase of 30% for the h-dipole and spiral antennas, and an increase of 100% for the bow-tie antenna. However, in this project we were not able to find any general conclusions about what geometrical parameters can further amplify the generated electric field. None of the antennas generated a large enough peak-to-peak electric field amplitude to manipulate the magnetic state of anti-ferromagnetic materials. However, they did successfully amplify the spintronic THz emitter output and could certainly be useful in that regard.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)