Using linear regression and neural network to forecast sewer flow from X-band radar data

University essay from Uppsala universitet/Institutionen för informationsteknologi

Abstract: The climate adaptation of our cities and the optimization of our technical systems with regards to weather sets high demands on the availability and the processing of weather data. The possibility to forecast disturbances of influent flow rate to wastewater treatment plants allow control systems counteract these disturbances before they have a harmful effect on the treatment processes. These forecasts can be made by different models A neural network models complex patterns between different data sets through a multi-layered structure containing a large amount of transformation functions. The aim of this project was to examine how the complex neural network performed compared with a simpler linear regression model when forecasting wastewater flow using high resolution X-band rain radar data. The study also investigated to what extent X-band rain radar data contributes to the performance of the model. The performance was evaluated at rain flow periods only. Wastewater flow data were provided by Avedøre wastewater treatment plant in Copenhagen operated by BIOFOS. The X-band rain radar data was provided by HOFOR. The neural network was developed by Informetics on the TensorFlow platform. This project concluded that the neural network and the linear regression model performed equally well at predicting when a rain flow period began. The neural network was more accurate at predicting the flow rate while the linear regression was better at approximating the accumulated flow over an entire rain flow period. Using additional rain data up to 30 km within the radar station location in comparison with using data only from within the catchment indicated a 20 to 30-minutes improvement of possible lead time. A conceivable lead time when forecasting the sewer flow to Avedøre wastewater treatment plant was estimated to be around 4 hours. 

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)