Physiological characteristics of sodium lactate infusion during resistance exercise

University essay from Gymnastik- och idrottshögskolan, GIH/Institutionen för idrotts- och hälsovetenskap

Abstract: Previous studies that utilized sodium lactate infusion did not use resistance exercise protocol or analyzed muscle biopsies, or performed sex specific analysis. Aim: We initiated a project where resistance exercise was performed with low and high levels of lactate, acquired by venous lactate infusion where the specific aim of this study was to investigate and chart the physiological characteristics of sodium lactate infusion during a bout of resistance exercise on whole group level and sexes separated Method: A randomized, placebo controlled, cross-over design was implemented where male (n = 8) and female (n = 8) subjects accustomed to resistance exercise visited the laboratory three times for preliminary testing and training familiarization. In the following two experimental trials subjects arrived in an overnight fasted state. A resting state muscle biopsy was extracted from m. vastus lateralis and repeated blood samples were initiated which followed by 20 minute of baseline infusion of either infusate in resting state at 0.05 mmol/kg/min infusion rate with additional bolus doses during subsequent exercise. Following a brief warm up, unilateral knee-extensions (6 x 8-10 reps at 75% of 1-RM) were performered with or without venous infusion of sodium lactate, with volume matched saline as control. Exercise load and volume were matched between trials. Four additional biopsies were extracted at post-exercise, recovery period, and 24-hour post-exercise. Results: Sodium lactate infusion vs saline infusion respectively during resistance exercise yielded significantly higher blood lactate with sodium lactate (6.78 ± 0.33 mmol/l vs 2.99 ± 0.17 mmol/l), plasma lactate (8.86 ± 0.39 mmol/l vs 4.39 ± 0.22 mmol/l), blood sodium (143 ± 0.4 mmol/l vs 142 ± 0.3 mmol/l), blood pH (7.42 ± 0.01 vs 7.34 ± 0.01), but lower blood potassium (3.9 ± 0.1 mmol/l vs 4.2 ±  0.1 mmol/l), all  immediately following exercise. Sodium lactate infusion elicited main effect of trials and muscle lactate increased from baseline (8.5 ± 0.9 mmol·kg-1 dw vs 7.0 ± 0.6 mmol·kg-1 dw) to post-exercise (31.5 ± 2.8 mmol·kg-1 dw vs 26.9 ± 3.2 mmol·kg-1 dw) with sodium lactate and saline infusion respectively. Blood glucose, hemoglobin and muscle pH was not affected by sodium lactate infusion. Conclusions: Utilization of the sodium lactate infusion method during a bout of resistance exercise may be used as tool to effectively increase blood/plasma lactate and, to lesser extent, muscle content of lactate. However, a concomitant slightly alkalizing effect of blood likely will occur.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)