Formulation of nanoemulsions stabilized by cellulose nanocrystals

University essay from KTH/Skolan för kemi, bioteknologi och hälsa (CBH)

Abstract: Cellulose nanocrystals (CNCs) are bio-based nanoparticles with the ability to stabilize oil and water emulsions thanks to their intermediate wettability and nanometric size. These and other types of particle-stabilized emulsions, commonly referred to as Pickering emulsions, are of great academic and industrial interest due to their superior stability against drop coalescence compared to classical surfactant-stabilized emulsions. In addition, the presence of a densely packed layer of particles at the oil-water interface is expected to impact the encapsulation ability of the emulsion droplets opening up for the possibility to use these systems to modulate the release of active substances in the context of oral or topical delivery formulations used in pharmaceutical and cosmetic applications. In these types of applications, the use of emulsions with nano-sized drops is advantageous due to their longtermcolloidal stability, improved dermal and mucosal transport of actives, improved bioavailability and greater aesthetic appeal and skin feel. This study had two main objectives. The first one was to explore to possibility to produce o/w emulsions with submicron-size drops by means of microfluidization using a combination of CNCs and hydroxypropyl methylcellulose (HPMC), a surface-active cellulose derivative that has been shown to have the ability to modify the wettability of CNCs (thereby enhancing their ability to adsorb at the oil/water interface). An important aspect of this first part of the study also involved gaining better understanding on the separate contributions of CNCs and HPMC to the properties of the resulting emulsions. The second objective of the work was to assess the performance of selected o/w CNC/HPMC compared to that of surfactant-stabilised emulsions in terms of their ability to deliver lutein, a hydrophobic prototype active of interest for topical delivery applications.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)