Non-invasive detection algorithm of thermal comfort based on computer vision

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: The waste of building energy consumption is a major challenge in the world. And the real-time detection of human thermal comfort is an effective way to meet this issue. As mentioned in name, it means to detect the human’s comfort level in real-time and non-invasively. However, due to the various factors such as individual difference of thermal comfort, elements related to climatic (temperature, humidity, illumination, etc.) and so on, there is still a long way to implement this strategy in real life. From another perspective, the current HVAC (heating, ventilating and air-conditioning) systems cannot provide flexible interaction channels to adjust atmosphere, and naturally fails to satisfy requirements of users. All of them indicate the necessity to develop a detection method for human thermal comfort. In this paper, a non-invasion detection method toward human thermal comfort is proposed from two perspectives: macro human postures and skin textures. In posture part, OpenPose is used for analyzing the position coordinates of human body key points’ in images, for example, elbow, knee, and hipbone, etc. And the results of analyzing would be interpreted from the term of thermal comfort. In skin textures, deep neural network is used to predict the temperature of human skins via images. Based on Fanger’s theory of thermal comfort, the results of both parts are satisfying: subjects’ postures can be captured and interpreted into different thermal comfort level: hot, cold and comfort. And the absolute error of prediction from neurons network is less than 0.125 degrees centigrade which is the equipment error of thermometer used in data acquisition. With the solution proposed by this paper, it is promising to non-invasively detect the thermal comfort level of users from postures and skin textures. Finally, theconclusion and future work are discussed in final chapter.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)