Sb/C composite anode for sodium-ionbatteries

University essay from Uppsala universitet/Strukturkemi

Abstract: In this thesis, a Sb/C composite electrode for sodium-ion batteries isprepared by a simple high energy ball milling and calenderingmethod. The prepared Sb/C composite electrode was assembled in ahalf-cell and symmetrical cell setups in order to perform avariety of electrochemical measurements.The composite electrode showed a reversible specific capacity of595 mAh/g, at a discharge/charge current rate of 15 mA/g. Theelectrode also showed a relatively good performance (compared toprevious studies) of 95% capacity retention after more than 100cycles, at a higher discharge/charge current rate of 60 mA/g. Theelectrode furthermore showed excellent self-dischargecharacteristics, in pause tests implemented over 200 hours (overeight days), which underlined the electrode materials good shelflife properties. A series of Sb/C symmetrical cells assembledthrough-out the project, furthermore, highlighted the stability ofthe solid electrolyte interface (SEI) layer formed on the Sb/Ccomposite electrode during cycling. Scanning electron microscopy(SEM) and Energy-dispersive X-ray spectroscopy (EDS) were used tocharacterize the surface morphology and composition of the Sb/Celectrode, respectively.A non-milled and milled (12 hours) graphite electrodes were alsoprepared for reference and comparison. The milled graphite matrixelectrode provided a reversible capacity of 95 mAhg-1 and acoulombic efficiency (CE) of 99% in over 250 cycles, at a currentrate of 30 mA/g. Milled and non-milled graphite were characterizedwith SEM and Raman spectroscopy, to help have a fundamentalunderstanding of the particle size and material phase,respectively.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)