Modelling and Control System Design to control Water temperature in Heat Pump

University essay from Karlstads universitet/Avdelningen för fysik och elektroteknik; Karlstads universitet/Avdelningen för fysik och elektroteknik


The thesis has been conducted at Hetvägg AB and the aim is to develop a combined PID and Model Predictive Controller (MPC) controller for an air to water heat pump system that supplies domestic hot water (DHW) to the users. The current control system is PLC based but because of its big size and expensive maintenance it must be replaced with a robust controller for the heat pump. The main goal of this project has been to find a suitable improvement strategy. By constructing a model of the system, the control system has been evaluated. First a model of the system is derived using system identification techniques in Matlab-Simulink; since the system is nonlinear and dynamic a model of the system is needed before the controller is implemented. The data has been estimated and validated for the final selection of the model in system identification toolbox and then the controller is designed for the selected model. The combined PID and MPC controller utilizes the obtained model to predict the future behavior of the system and by changing the constraints an optimal control of the system is achieved. In this thesis work, first the PID and MPC controller are evaluated and their results are compared using transient and frequency response plots. It is seen that the MPC obtained better control action than the PID controller, after some tuning the MPC controller is capable of maintaining the outlet water temperature to the reference or set point value. Both the controllers are combined to remove the minor instabilities from the system and also to obtain a better output. From the transient response behavior it is seen that the combined MPC and PID controller delivered good output response with minimal overshoot, rise time and settling time.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)