Design analysis and optimization of the Hyperloop shell and chassis

University essay from KTH/Skolan för industriell teknik och management (ITM)

Abstract: In the past decades of years, huge amounts of people chose to move to big cities for better education and medical service, which also makes many cities are very crowded and noisy. Moreover, the house rent in city center is some kind too expensive for many people, especially for the youth. In this sense, more people are willing to live in suburb instead of city center. Due to the larger distance between home and office, people’s requirement for a faster public transportation method is enormous. Elon Musk first publicly mentioned the concept of Hyperloop in 2012[1], which is a sealed tube or system of tubes with nearly vacuum condition through which a pod can transport people or objects at super high velocity. With the linear induction motor and magnetic levitation technology, the drag force on the pod can be reduced tremendously, thus increasing the peak velocity to 1200 km/h. To gather more ideas for this concept, SpaceX holds the Hyperloop Pod Competition where worldwide teams will design their own Hyperloop pod to demonstrate their technical feasibility of new ideas [2]. A Hyperloop system is currently in development by the Integrated Transport Research Lab (ITRL) at KTH Royal Institute of Technology to participate in the upcoming Hyperloop Pod Competition. KTH Hyperloop group has some primary design of chassis and shell. However, they have no idea how good of their current design is. Furthermore, since the velocity is the only criteria for this competition, they also want to reduce the mass as much as possible. In this sense, some finite element analysis and optimization analysis are necessary. The objective of this master’s thesis is to analyze the current shell and chassis design to assess the quality of the attachments and integrity of the design and to reduce the total mass while keeping the stiffness within the safety range. The used tools are HyperMesh, Optistruct and HyperView which are parts of the software HyperWorks from Altair.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)