Numerical Simulations of Wave Propagation between a Left-Handed Material and a Right-Handed Material

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: The discovery of metamaterials has led to major advances in different fields of physics including optics, microwave engineering and acoustics. Specific to theoretical electromagnetism, the introduction of metamaterials have led to the development of negative-index materials (NIMs) with simultaneous negative permittivity and negative permeability with backward-wave propagation. In recent studies, exact analytical solutions for wave propagation from a step/graded-index interface between a right-handed material (RHM) and a left-handed material (LHM) have been obtained. This study attempts to provide numerical validation of the analytical solutions obtained by Dalarsson et al. by using the simulation tool CST. An square-SRR/strip-wire unit element was designed, with real part of relative permittivity equal to -1.96 and real part of relative permeability equal to -1.01. Such unit elements were orderly structured to produce a NIM structure. Furthermore, a positive-index material (PIM) structure was produced by reversing the sign of the material properties of the NIM. Both the results for the step- and graded-index interfaces have shown to possess backward-wave propagation for a normal incidence angle. The graded-index interface profiles have a more smooth and continuous wave propagation between the materials, which counteracts the effects of discontinuous material transitions present in step-index interface profiles. However, because the results of the present study were considerably affected by unwanted field effects, the analytical solutions are only qualitatively validated, and not validated in terms of their numerical accuracy. 

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)