Toward Adaptation of Data Enabled Predictive Control for Nonlinear Systems

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: With the development of technology and availability of data, it is sometimes easier to learn the control policies directly from the data, rather than modeling a plant and designing a controller. Modeling a plant is not always possible due to the complexity of the plant. Data-enabled predictive control (DeePC) is a recently proposed approach that combines system identification, estimation, and control in a single optimization problem. DeePC is primarily designed for LTI systems. The purpose of this thesis is to extend the application of DeePC to nonlinear systems with a particular focus on a non-holonomic ground robot. To reach this goal, we decompose the system states into different working modes where each mode can be linearly approximated. Furthermore, the data collection policies were also evaluated to conclude how they affect the performance of the DeePC. We identified several key challenges in this direction, namely: data-demanding structure, high computational complexity, and performance deterioration with increased non-linearity. While these challenges prohibited the application of DeePC to the ground robot system; we successfully applied the method to a benchmark non-linear system, the inverted pendulum on cart problem, and studied the effect of various design choices on control performance. Our observations indicate potential areas of improvement toward enabling DeePC for highly nonlinear systems. 

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)