Objectively recognizing human activity in body-worn sensor data with (more or less) deep neural networks
Abstract: This thesis concerns the application of different artificial neural network architectures on the classification of multivariate accelerometer time series data into activity classes such as sitting, lying down, running, or walking. There is a strong correlation between increased health risks in children and their amount of daily screen time (as reported in questionnaires). The dependency is not clearly understood, as there are no such dependencies reported when the sedentary (idle) time is measured objectively. Consequently, there is an interest from the medical side to be able to perform such objective measurements. To enable large studies the measurement equipment should ideally be low-cost and non-intrusive. The report investigates how well these movement patterns can be distinguished given a certain measurement setup and a certain network structure, and how well the networks generalise to noisier data. Recurrent neural networks are given extra attention among the different networks, since they are considered well suited for data of sequential nature. Close to state-of-the-art results (95% weighted F1-score) are obtained for the tasks with 4 and 5 classes, which is notable since a considerably smaller number of sensors is used than in the previously published results. Another contribution of this thesis is that a new labeled dataset with 12 activity categories is provided, consisting of around 6 hours of recordings, comparable in number of samples to benchmarking datasets. The data collection was made in collaboration with the Department of Public Health at Karolinska Institutet.
AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)
