Multi-Person Infrared Pupil Tracking for 3D TV without Glasses

University essay from Institutionen för informatik

Abstract:  The success of recent 3-D stereoscopic movies such as Avatar has created a lot of attention for 3-D in the home. Almost all major consumer electronics (CE) manufacturers have launched their 3-D stereoscopic displays in the market. A problem with those solutions is that viewers have to wear glasses. Glasses-free autostereoscopic 3-D displays typically use lenticular lenses or barriers to create multiple views. However these displays suffer from a number of issues: inverted views at viewing cone transitions, cross-talk between views, and need for multi-view content.  As Philips Electronics research group, we believe that some of these issues can be reduced by using pupil tracking. In the research process, we began with an extensive literature study on people detection and tracking techniques that helped us to understand the benefits and the shortcomings of different applications. Addition to literature studies, we greatly benefited from constant experimentation with prototypes and the hands-on experience with variety of digital and optical components under different conditions. As a result, we designed a multi-person infrared pupil tracker and multi-view renderer for 3D display to adapt the view rendering in real-time according to viewer’s position. Together with the integration of these two applications, the integrated 3D TV successfully adapts the center view according to position of the viewer and able to provide a smooth transition while the viewer actively changes her position from a notable distance under ambient illumination. However, even though the pupil tracker is implemented for multiple people, because of the time limitation and the complexity of the problem regarding multi-view renderer, the integrated system functions only for one person.   Exploring the employed technique, in-depth description and detailed illustration of designed applications and the conclusions drawn from the implemented system; we believe that this paper forms a substantial guidance and show-how source for further research in the field of 3D display and people tracking methods.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)