Volumetric Terrain Genereation on the GPU : A modern GPGPU approach to Marching Cubes

University essay from KTH/Skolan för datavetenskap och kommunikation (CSC)

Abstract: Volumetric visualization is something that has become more interesting during recent years. It has been something that was not feasible in an interactive environment due to its complexity in the 3D space. However, today's technology and access to the power of the graphics processing unit (GPU) has made it feasible to render volumetric data interactively. This thesis explores the possibilities to create and render large volumetric terrain using an implementation of Marching Cubes on the GPU. With the advent of general-purpose computing on the GPU (GPGPU) it has become far easier to implement tradition CPU tasks on the GPU. By utilizing newly available functions in DirectX it is possible to create an easier implementation on the GPU using global buffers. Three implementations are created inside the Unity game engine using compute shaders. The implementations are then compared based on creation time, render times and memory consumption. Then a deeper analysis of the time distribution is presented which suggests that Unity introduces some overhead since copying buffers from GPU to CPU is time consuming. It did however improve render times due to its culling and optimization techniques. The system could be used in applications such as games or medical visualization. Finally some future improvements for culling and level of detail (LOD) techniques are discussed.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)