Discrete simulation models of surface growth

University essay from KTH/Teoretisk fysik

Author: Martin Björk; Erik Deng; [2014]

Keywords: ;

Abstract: In this thesis the time evolution and scaling properties of different discrete models of surface growth using computer simulation is studied. The models are mainly using random deposition at a perpendicular angle to the substrates to model the adsorption process, and both one dimensional and two dimensional surfaces are considered. The Edwards-Wilkinson, Kardar-Parisi-Zhang and Mullins equations are also studied as analytical methods to describe the growth of surfaces. The scaling exponents derived from these equations are used as reference when analysing the exponents calculated from the simulation models studied in this thesis. We have found that the simulation models do not correspond perfectly with the analytical models for surface growth, suggesting possible flaws in our models or definitions. Despite the possible flaws, the models prove to be powerful tools for analysing the time evolution of surface growth. Furthermore, we have shown that most of the simulation models exhibit the expected scaling properties, which indicates that the surfaces do have the self-affine structure they are presumed to have.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)