A model for heterogenic catalytic conversion of carbon dioxide to methanol

University essay from Linköpings universitet/Institutionen för fysik, kemi och biologi

Abstract: Since our society became industrialised, the levels of carbon dioxide in our atmosphere have been steadily rising, to the point where it in early 2020 at is 413 ppm. The high concentration is causing several troubling effects worldwide because of the increase in mean temperature that it creates, which causes longer draughts, more severe floods, and rising seawater levels to name a few. There are a few measures that can be taken to reduce carbon dioxide in the atmosphere, among which there are a number of methods that currently are being researched and/or used. The prospect of capturing carbon dioxide and using it as a carbon building block to make methanol is one solution that is particularly interesting, since it in theory could provide a fuel for combustion engines that is net neutral regarding carbon emission. Methanol can be synthesised from carbon dioxide using a heterogeneous catalyst consisting of copper, Cu, and zinc oxide, ZnO. This research is focused on one of the components of the catalyst, the metal oxide ZnO in the form of crystallites or nanoparticles (ZnO)n. Quantum chemistry is a branch of computational chemistry which is centered on solving the Schrödinger equation for molecular systems. Density functional theory, DFT, is an approach to quantum theory which in this study was used to calculate the geometry and energy of the particles. The supercomputer Tetralith in the National Supercomputer Centre, NSC, was used to carry out the calculations. The DFT calculations utilized the functional B3LYP and the basis set 6-31G (d,p). One of the largest particle sizes studied, (ZnO)20, with a structure that has a large, flat surface, was found to be the most energetically favourable. According to studies, the presence of an oxygen vacancy on the surface of ZnO reduces the amount of activation energy required for CO2 to bond to the particle, which increases the chance of forming CO and thus continuing the process of forming methanol. Two structures of (ZnO)20 were investigated in this regard, where oxygen atoms were removed at different locations, creating four versions of Zn20O19 in total. This proved yet again that the version with a large, flat surface yields the lesser amount of energy when an O atom is removed from the centre of its surface. The adsorption of CO2 to the ZnO clusters was studied by calculating the energy of adsorption, and this showed that it was the second version of (ZnO)20, without an O vacancy, that yielded the least amount of energy, thus being the most favourable species to engage in physisorption with CO2. Lastly, the activation energy was investigated, and a diagram of the reaction process of CO2 adsorbing to Zn20O19 forming (ZnO)20 and CO is presented in this paper, which shows that the required activation energy is 127 kJ/mol.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)