Anomaly Detection on Embedded Sensor Processing Platform

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: Embedded platforms are often used as a sensor data processing node to collect data and transmit the data to the remote server. Due to the poor performance and power limitation, data processing was often left to the remote server. With the improvement of the computation ability, it is becoming possible to do some partial data processing on the embedded platforms, which would reduce the power and time consumption on the data transmission. Moreover, processing the data locally on the embedded platforms could reduce the dependence on the network. The platform could even do some tasks offline. This project aims to explore effective data analysis methods, especially for anomaly detection, which could be implemented on the embedded platform to be analyzed and detected locally. In this project, we select four methods: Seasonal and Trend Decomposition Using Loess (STL), Autoregressive Integrated Moving Average Model (ARIMA), Vector Autoregression (VAR), Long ShortTerm Memory (LSTM), to implement on the embedded platform ESP32. To test which methods could better fit the platform, we evaluate and compare the result from two aspects: the time overhead and the accuracy. The results show that the STL has the highest detection accuracy, but its time overhead is significantly higher than all other methods. ARIMA has the smallest time overhead and higher accuracy than LSTM and VAR. For LSTM, the method performs better with univariable input than multivariable input. Finally, we discuss the factors that may influence the result and future works. 

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)