U-RANS Simulation of fluid forces exerted upon an oscillating tube array

University essay from KTH/KTH/Farkost och flygAeroakustik


The aim of this master thesis is to characterize the fluid forces applied to a fuel assembly inthe core of a nuclear power plant in case of seism. The forces are studied with a simplifiedtwo-dimensional model constituted of an array of 3 by 3 infinite cylinders oscillating in aclosed box. The axial flow of water, which convects the heat in the core of a nuclear powerplant, is also taken into account. The velocity of the axial flow reaches 4m/s in the middle ofthe assembly and modifies the forces features when the cylinders move laterally.The seism is modeled as a lateral displacement with high amplitude (several cylinderdiameters) and low frequencies (below 20 Hz). In order to study the effects of the amplitudeand of the frequency of the displacement, the displacement taken is a sine function withboth controlled amplitude and frequency. Four degrees of freedom of the system will bestudied: the amplitude of the displacement, its frequency, the axial velocity amplitude andthe confinement (due to the closed box).The fluid forces exerted on the cylinders can be seen as a combination of three terms: anadded mass, related to the acceleration of cylinders, a drift force, related to the damping ofthe fluid and a force due to the interaction of the cylinder with residual vortices. The firsttwo components will be characterized through the Morison expansion, and their evolutionwith the variation of the degree of freedom of the system will be quantified. The effect ofthe interaction with the residual vortices will be observed in the plots of the forces vs. timebut also in the velocity and vorticity map of the fluid.The fluid forces are calculated with the CFD code Code_Saturne, which uses a second orderaccurate finite volume method. Unsteady Reynolds Averaged Navier Stokes simulations arerealized with a k-epsilon turbulence model. The Arbitrary Lagrange Euler model is used todescribe the structure displacement. The domain is meshed with hexahedra with thesoftware gmsh [1] and the flow is visualized with Paraview [2]. The modeling techniquesused for the simulations are described in the first part of this master thesis.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)