High-resolution simulation and rendering of gaseous phenomena from low-resolution data

University essay from Linköpings universitet/Medie- och Informationsteknik

Abstract: Numerical simulations are often used in computer graphics to capture the effects of natural phenomena such as fire, water and smoke. However, simulating large-scale events in this way, with the details needed for feature film, poses serious problems. Grid-based simulations at resolutions sufficient to incorporate small-scale details would be costly and use large amounts of memory, and likewise for particle based techniques. To overcome these problems, a new framework for simulation and rendering of gaseous phenomena is presented in this thesis. It makes use of a combination of different existing concepts for such phenomena to resolve many of the issues in using them separately, and the result is a potent method for high-detailed simulation and rendering at low cost. The developed method utilizes a slice refinement technique, where a coarse particle input is transformed into a set of two-dimensional view-aligned slices, which are simulated at high resolution. These slices are subsequently used in a rendering framework accounting for light scattering behaviors in participating media to achieve a final highly detailed volume rendering outcome. However,the transformations from three to two dimensions and back easily introduces visible artifacts, so a number of techniques have been considered to overcome these problems, where e.g. a turbulence function is used in the final volume density function to break up possible interpolation artifacts.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)