Load Control Aerodynamics in Offshore Wind Turbines

University essay from KTH/Kraft- och värmeteknologi

Abstract: Due to the increase of rotor size in horizontal axis wind turbine (HAWT) during the past 25 years in order to achieve higher power output, all wind turbine components and blades in particular, have to withstand higher structural loads. This upscalingproblem could be solved by applying technologies capable of reducing aerodynamic loads the rotor has to withstand, either with passive or active control solutions. These control devices and techniques can reduce the fatigue load upon the blades up to 40% and therefore less maintenance is needed, resulting in an important money savings for the wind farm manager. This project consists in a study of load control techniques for offshore wind turbines from an aerodynamic and aeroelastic point ofview, with the aim to assess a cost effective, robust and reliable solution which could operate maintenance free in quite hostile environments. The first part of this study involves 2D and 3D aerodynamic and aeroelastic simulations to validate the computational model with experimental data and to analyze the interaction between the fluid and the structure. The second part of this study is an assessment of the unsteady aerodynamic loads produced by a wind gust over the blades and to verify how a trailing edge flap would influence the aerodynamic control parameters for the selected wind turbine blade. 

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)