Capacity assessment of a single span arch bridge with backfill : A case study of the Glomman Bridge

University essay from KTH/Byggvetenskap

Abstract:   The aim of this Master Thesis is to assess the load carrying capacity of the Glomman Bridge outside of the Swedish city Örebro. The Glomman Bridge is an unreinforced concrete single span arch bridge with backfill. The bridge was constructed in 1923 on assignment from the Swedish National Railways (SJ). The failure criteria used in this thesis is that the bridge collapses when any cross section in the concrete arch reaches its ultimate capacity. In reality, the bridge may manage heavier loads than this. When the capacity is reached in a cross section, a hinge is formed and the arch relocates the forces to other parts of the arch that can carry higher stresses. The real bridge will not collapse until a fourth hinge is formed, and by that a mechanism. To be able to calculate the cross section forces in the arch, it was necessary to know the influences of the loads on the arch when they were run along the bridge. For this purpose, influence lines were obtained from a 2D finite element model created in ABAQUS, a general FE-analyses software. A calculation routine to find the least favourable load combination was then created in Matlab, a numerical calculation software. The routine was made to find the worst case among different load cases and to combine the standardized axle pressures with the present number of axles. A parametric survey was also performed because the material properties for the different parts of the bridge are very uncertain. In the survey, the initial values were changed one at a time to study the outcome on the load factor. The load factor is the ratio between the ultimate limit load and the actual load. The studied parameters are the compressive strength, the Young's modulus, the density and the Poisson's ratio of the different parts of the bridge. The parameters are studied individually irrespective of possible correlation. The studied parts of the bridge are the backfill, the arch, the abutments and the asphalt. The clearly most important component is found to be the backfill. With increased stiffness or increased Poisson's ratio in the backfill follows increased load factor. The equations behind the failure envelope can be derived from equilibrium equations for the unreinforced cross section. The influence lines are normalised with respect to the capacity of the cross section to get the degree of efficiency along the whole length of the arch, instead of the common influence lines that give the cross section forces. This is done because the failure is not caused by large cross section forces but by an exceeded ultimate stress. As the different loads are run along the bridge, the largest positive and negative efficiency for bending moment and normal force are localised. The normalised cross section forces are plotted together with the failure envelope and the load factor is then calculated. Several masonry arch bridges were loaded until collapse in a study performed by the British Transport and Road Research Laboratory. One of the bridges in the study, the Prestwood Bridge, has been used in this thesis as a comparison to the Glomman Bridge. The load carrying capacity of the Prestwood Bridge is known, and is used to verify that the method using the failure envelope is applicable. To compare the results from the cross section analysis from the failure envelope model to another method, the Glomman Bridge and the Prestwood Bridge were also tested in the commercial software RING 2.0. The method used in RING 2.0 differs from the failure mode in this thesis by calculating the load factor when four different cross sections reach their capacity and the bridge collapses. The failure envelope method allows an A/B-value (Axle- and Bogie load) of 102 kN/147 kN when using very poor values of the parameters and 181 kN/226 kN when using a reference case with normal parameters. Although the load capacity is found to be acceptable, the uncertainties are still large. To get a more accurate apprehension of the condition of the actual bridge, further research should be carried out, such as e.g. a non-linear model.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)