Recycling strategies for End-of-Life Li-ion Batteries from Heavy Electric Vehicles

University essay from KTH/Energisystem

Author: Iryna Samarukha; [2020]

Keywords: ;

Abstract: The master thesis tackles the problem of recycling of end-of-life Li-ion batteries from heavy electric vehicles. The comparative analysis includes review of current global situation with batteries wastes and projections of materials that may be recovered. The transportation, pre-processing and two alternatives of recycling are considered. The modelling includes the evaluation of both economic parameters (revenue streams, costs breakdown) and environmental footprint (energy consumption and sources, water consumption, and emissions breakdown). The costs analysis has shown that transportation of spent LIBs as a hazardous wastes are 5.39 €/(t cells∙km) on distance up to 200 km and 3.60 €/(t cells∙km) if transportation distance is over 200 km. Modelling of recycling alternatives for different battery chemistries shows that the highest revenue is generated from NMC111 batteries in the hydrometallurgical recycling, Batteries without Cobalt and Nickel in electrode composition (LMO and LFP) generate comparably low revenue due to low value of recovered materials. The negative environmental impact of hydrometallurgical recycling, particularly, in emission of GHGs, energy and water use is more higher comparing to pyrometallurgical recycling. However, hydrometallurgy results in recovery of broader spectrum of materials of high quality.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)